Equation Discovery for Macroeconomic Modelling
نویسندگان
چکیده
This article describes a machine learning based approach applied to acquiring empirical forecasting models. The approach makes use of the LAGRAMGE equation discovery tool to define a potentially very wide range of equations to be considered for the model. Importantly, the equations can vary in the number of terms and types of functors linking the variables. The parameters of each competing equation are automatically fitted to allow the tool to compare the models. The analysts using the tool can exercise their judgement twice, once when defining the equation syntax, restricting in such a way the search to a space known to contain several types of models that are based on theoretical arguments. In addition, one can use the same theoretical arguments to choose among the list of best fitting models, as these can be structurally very different while providing similar fits on the data. Here we describe experiments with macroeconomic data from the Euro area for the period 1971–2007 in which the parameters of hundreds of thousands of structurally different equations are fitted and the equations compared to produce the best models for the individual cases considered. The results show the approach is able to produce complex non-linear models with several equations showing high fidelity.
منابع مشابه
The Effects of Oil Price Movement on Nigerian Macroeconomic Variables: Evidence from Linear near and Nonlinear ARDL Modelling
T he study seeks to investigate both linear and nonlinear effects of oil price movement on critical macroeconomic variables (output, price and exchange rate) in Nigeria using ARDL modeling approach. Previous studies substantially relied on linear methods using VAR approach to unravel this links without a clear conclusion. In an attempt to seek better results in this study, we employ both l...
متن کاملLinear non-Gaussian causal discovery from a composite set of major US macroeconomic factors
In this paper, we develop an effective approach to model linear non-Gaussian causal relationships among a composite set of major US macroeconomic factors. The proposed approach first models the linear relationships of the factors using the Vector Autoregression (VAR) model, then the casual relationships are discovered using the linear non-Gaussian Structural Equation Modeling (SEM) method. One ...
متن کاملA kinetic approach to some quasi-linear laws of macroeconomics
Some previous works have presented the data on wealth and income distributions in developed countries and have found that the great majority of population is described by an exponential distribution, which results in idea that the kinetic approach could be adequate to describe this empirical evidence. The aim of our paper is to extend this framework by developing a systematic kinetic approach o...
متن کاملModelling and prediction of phytoplankton growth with equation discovery
In contrast with traditional modelling methods, which are used to identify parameter values of a model with known structure, equation discovery systems identify the structure of the model also. The model generated with such systems can give experts a better insight into the measured data and can be also used for predicting future values of the measured variables. This paper presents LAGRAMGE, a...
متن کاملVARMA versus VAR for Macroeconomic Forecasting
In this paper, we argue that there is no compelling reason for restricting the class of multivariate models considered for macroeconomic forecasting to VARs given the recent advances in VARMA modelling methodology and improvements in computing power. To support this claim, we use real macroeconomic data and show that VARMA models forecast macroeconomic variables more accurately than VAR models.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009